

Smart transmitter/Gas Detector Head

Safety Manual

Document Number: PT2E-306(Rev.13)

[NOTE] The SD-3 is certified for functional safety (IEC 61508:2010 Part 2 and Part 3). To ensure certified functionality, maintain the product as described in this document.

RIKEN KEIKI Co., Ltd.

2-7-6 Azusawa, Itabashi-ku, Tokyo, 174-8744, Japan Phone : +81-3-3966-1113 Fax : +81-3-3558-9110 E-mail : intdept@rikenkeiki.co.jp Web site : https://www.rikenkeiki.co.jp/

Revision history

Rev.	Details	Approved	Checked	Created
		KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
0	New document	Jun 25, 2021	Jun 25, 2021	Jun 25, 2021
4		KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
I	Only fev up to match the Japanese version	Jun 25,2021	Jun 25,2021	Jun 25,2021
_	Add SD-3EC	KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
2		Nov 16,2021	Nov 16,2021	Nov 16,2021
	P8 2-4 Change Diagnosis response 15s -> 20s.	KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
3	P11 2-15 Product service life. Chang to the sensor and Oter than the Sensor	Dec 2,2021	Dec 2,2021	Dec 2,2021
	P8 2-6 Proof test Add wording	KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
4	P11 2-11 Reliability data update P12 2-19 H/W,S/W version update	Jun 28,2022	Jun 28,2022	Jun 28,2022
	P4 Change wording 1-1 Ambient conditions	KOGURE Shinsuke	MUTOU Hiroki	SAIKI Yuki
5	P5 Add 1-3 Applicable standards P6 Add Table 2 Environmental condition P9 Add item in 2-3 Safety accuracy P12 Update 2-11 Reliability data P13 Add item 2-19 H/W S/W version	Jan 10,2023	Jan 10,2023	Jan 10,2023
	P12 Update 2-11 Reliability data	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
6	P13 Delete item and Version UP 2-19 H/W S/W version	Apr 27,2023	Apr 27,2023	Apr 27,2023
7	P12 Update 2-11 Reliability data	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
/		May 17,2023	May 17,2023	May 17,2023
	P7 Change to Table2.Environmental condition	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
8	P13 Update 2-11 Reliability data P14 Update 2-19 H/W S/W version	Aug 4,2023	Aug 4,2023	Aug 4,2023
	Change from "operating manual" to	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
9	"SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.7"	Aug 10,2023	Aug 10,2023	Aug 10,2023

10	Update note of Table2	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
10		Aug 16,2023	Aug 16,2023	Aug 16,2023
11	Update 1-1 Ambient conditions	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
		Aug 17,2023	Aug 17,2023	Aug 17,2023
	Update 1-1 Ambient conditions	KOGURE Shinsuke	HIRAO Keisuke	SAIKI Yuki
12	Update 2-19 Identification of Ardware/software configurations	Aug 21,2023	Aug 21,2023	Aug 21,2023
	Update Table2 in 1-1 Ambient condition.	KOGURE Shinsuke	HIRAO Keisuke	Masahiro Suzuki
	Update 2-11 Reliability data.			
	Update 2-19 Identification of		Jul 23,2024	Jul 23,2024
13	hardware/software configurations.	I 100 0004		
	Update "SD-3 Series Export Specifications	Jul 23,2024		
	Technical Manual for SIL and FM Specifications			
	(PT2E-287) "Version. 13			

Contents

1	Pur	pose	. 5
	1-1	Ambient conditions	. 5
	1-2	Regulations and applicable standards (functional safety)	. 5
	1-3	Applicable standards (other than functional safety standards)	. 6
	1-4	Magnetic field threshold limit values (immunity level)	. 7
2	Usa	ge Instructions	. 9
	2-1 Sa	afety Functions	. 9
	2-2 No	on-functional safety features	. 9
	2-3 Sa	afety accuracy	11
	2-4 Di	agnosis response	11
	2-5 Se	etup	11
	2-6 Pr	oof test	11
	2-7 M	aintenance	13
	2-8 Re	epairs and replacements	13
	2-9 St	orage, Relocation, and Disposal	13
	2-10 \$	Startup time (initialization time)	13
	2-11 F	Reliability data	14
	2-12 (Dperation mode	14
	2-13 A	vailability rate	14
	2-14 F	Power source	14
	2-15 F	Product service life	14
	2-16 F	Requested parameter settings	14
	2-17 L	imitations on installation and operating environments	15
	2-18 A	Application limitations	15
	2-19 l	dentification of hardware/software configurations	15
	2-20 F	Product Specifications	15
	2-21 E	Error codes and message	15
	2-22 (Dperator interfaces	15
	2-23 F	Prohibited items	16
	2-24 1	erminology and abbreviations	16

Safety Manual

1 Purpose

This Safety Manual can be used at SIL2 in HFT 0 and SIL 3 in HFT 1. (SIL 3 Capable) This document discusses topics for which the user is responsible if the SD-3 (this product), a certified device, functions as or is part of a configuration functioning as a safety instrument. These topics include proof testing, repairs and replacement, reliability data, product service life, environmental limitations, operational limitations, and various parameters. To ensure product safety, carefully read this document and all related documents.

This product monitors combustible gases, toxic gases, and oxygen concentrations at sampling points.

This safety device is designed to prevent gas-related accidents and injury by outputting a current (4 - 20 mA) to indicate the gas concentrations detected.

Classified as a sensor (subsystem) for safety devices, this product outputs 4 - 20 mA current according to the gas concentrations detected, or HART protocol signals when requested by the upstream system, to a logic section of the upstream system.

This product was developed for use as a single sensor in a SIL2 loop (IEC 61508).

1-1 Ambient conditions 2 5
Operating temperature range
Absolute Maximum temperature range
Operating humidity range
Storage temperature range
Storage humidity range
See Table 2. for SD-3EC and SD-3ECB

:-40 to +70 °C (no sudden changes)
:-45 to +75 °C (no sudden changes) 11
: 10 to 90 %RH (no condensation)
: -10 to +40 °C (no sudden changes)
: 10 to 90 %RH (no condensation)

1-2 Regulations and applicable standards (functional safety)
 IEC 61508:2010 Parts 1 to 7
 Functional Safety of Electrical/Electronic/Programmable Electronic
 Safety-Related Systems

	Japanese explosion-proof	General provisions in 2015 technological
		standards
		Flameproof enclosures in technological
•		standard 2018
$\sqrt{5}$	EMC related	EN 50270:2015 (Type 2)
		BS EN 50270:2015 (Type 2)
	IECEx standards	IEC 60079-0:2017
Λ		IEC 60079-1:2014
$\sqrt{5}$	ATEX related	EN IEC 60079-0:2018
		EN 60079-1:2014
		BS EN IEC 60079-0:2018
		BS EN 60079-1:2014
	Performance related	IEC/EN 60079-29-1
		EN 45544-3
		EN 50104
	HART	HART7

1-3 Applicable standards (other than functional safety standards)

1-4 Magnetic field threshold limit values (immunity level) EN 50270:2015 request level

Table 1 Immunity test	reauirements: EN 50270:2015 (Tvpe 2)
-----------------------	-------------------------------	---------

Item	Test Procedure	Specification	Criteria
Electrostatic	EN	±6 kV (CD: contact discharge)	A
discharges	61000-4-2:2009	±8 kV (AD: air discharge)	
Radio-frequency	EN	10 V/m: 80 – 1,000 MHz	A
electromagnetic field	61000-4-3:2006	10 V/m: 1.4 - 2 GHz	
	+A1:2008	3 V/m: 2 - 2.7 GHz	
	+A2:2010	80 %AM, 1 kHz (unmodulated, rms)	
Electrical fast	EN	(DC power, earth line)	A
transient/burst	61000-4-4:2004	±2 kV (5/50 ns, 5 kHz)	
(DC power)	+A1:2010		
(Earth line)		(I/O Signal)	
(I/O signal)		±1 kV (5/50 ns, 5 kHz)	
Surges	EN	(DC power)	В
(DC power)	61000-4-5:2006	±2 kV (line to ground)	
(I/O signal)		±1 kV (line to line)	
		(1.2/50 (8/20) µs)	
		(I/O signal)	
		±1 kV (line to ground)	
		(1.2/50 (8/20) µs)	
Radio-frequency	EN	0.15 - 80 MHz, 10 V (unmodulated,	A
common mode	61000-4-6:2009	rms) 80 %AM, 1 kHz	
(I/O signal)			
Power frequency	EN	50/60 Hz, 30 A/m (rms)	A
magnetic field	61000-4-8:2010		
			-
Voltage dips	EN61000-4-29	0 % residual voltage / 1,000 ms	С
		duration	
		40 % residual voltage / 1,000 ms	
		duration	
Short interruptions	EN61000-4-29	0 % residual voltage / 20 ms duration	C

Table2. Environmental condition 5 8 10 11 12 13

Madal	Caa	Operating	Abaaluta	Operating	atorago	noto
Model	Gas	Operating	Absolute		sionage	note
	туре	temperature	Maximum	numidity	conditions	
		range	temperature	range	<u></u> *1	
		X1	range※1	X1		
					-10°C~+40°C	
ESF-A24P	CO	-25∼55°C	-30∼60°C	20~90%RH	0% RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-A24R	H2S	-25∼55°C	-30~60°C	20~90%RH	0%RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-B22	NH3	-25∼55°C	-30~60°C	30~80%RH	0% RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-A24A	NO2	-25∼55°C	-30∼60°C	20~90%RH	0% RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-X24P2	O2	-25∼55°C	-30~60°C	20~90%RH	0%RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-C92	CL2	-20∼55°C	-25~60°C	30~80%RH	0%RH \sim	-
					90%RH	
					-10°C~+40°C	
ESF-A24R3	H2S	-25∼55°C	-30~60°C	5~95%RH	0%RH \sim	-
					90%RH	

%1 No sudden changes in temperature or condensation (no fluctuations of 10°C or more per hour).

If the temperature fluctuates more than 10°C or more per hour, please use optional accessories.

2 Usage Instructions

2-1 Safety Functions

The following items are the safety functions of this product.

• Monitors combustible gases, toxic gases, and oxygen concentrations at sampling points.

• Safe status means the current is output to the upstream system according to the concentrations of the combustible gases, toxic gases, or oxygen being monitored. The product outputs 4 - 20 mA signals and HART protocol signals (*).

• 4 - 20 mA output

The relationship between the measured gas concentrations and 4 - 20 mA output is proportional. The output is 4 mA at F.S \times 0 %, and when concentration is full scale, the output is 20mA at F.S \times 100 %.

* HART output is not included in the safety functions.

2-2 Non-functional safety features

The following features are not functional safety features:

- HART output
- Contact output (optional)
- RS485 output (optional)

System example

An example of a system that controls a solenoid valve via PLCs to create a shut off.

2-3 Safety accuracy

Safety accuracy: 20 %

*The FMEDA failure rate includes failures of internal parts causing deviations exceeding this accuracy.

	Applicable sensors:	NCF series
	Gas response:	50 % of response time is within 20 seconds
		90 % of response time is within 60 seconds
	Applicable sensors:	IRF series
	Gas response:	50 % of response time is within 20 seconds
		90 % of response time is within 60 seconds
•		
∕2∖	Applicable sensors:	ESF(Toxic) series
	Gas response:	50 % of response time is within 60 seconds
		90 % of response time is within 150 seconds
$\overline{5}$	Applicable sensors:	ESF(O2) series
	Gas response:	20 % of response time is within 10 seconds
		90 % of response time is within 45 seconds

2-4 Diagnosis response

ROM/RAM check self-diagnostic: 24 hours

Maximum response time for self-diagnostic results other than the above: 20 seconds *This indicates that notification is output within this time with regard to part failures detected by the self-diagnostic.s. Note that this is the combined total time for the self-diagnostic test interval and failure response time.

2-5 Setup

Refer to '5.Usage Instruction' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". Also test the parameters already set.

2-6 Proof test Proof test details:

Calibration, adjustment of 4 - 20 mA output values, sensor replacement, etc.

11 / 17

	Do not replace the sensor by yourself.
	(Refer to '7-7-2 Replacement of periodic replacement parts' in the
	"SD-3Series Export Specifications Technical Manual for SIL and FM
	Specifications (PT2E-287) rev.8" for the frequency for replacing
	sensors.) 1 13
Proof test standards:	Must allow/perform calibration.
	Alarm delay times and gas response times must meet performance
	expectations.
MTTR:	24 hours
Tools used:	Refer below

Tools used	Specifications	Maintenance
Calibration gas	Depends on gas type.	Must be traceable.
Calibration	Dedicated calibration adapter for IRF sensors	Undamaged
adapter	(4283 9011 00)	
	Dedicated calibration adapter for combustible F	
	sensors (4283 9012 70)	
	Dedicated calibration adapter for ESF sensors	
	(4283 9013 40)	
Pump	One with flow rate of 0.5 L/min or more	Maintenance by the
	One meeting explosion-proof specifications	manufacturer
Flowmeter	One capable of measuring to 0.1 L tolerances	Maintenance by the
	One with markings allowing identification of flow	manufacturer
	rate settings and tolerances	
	It is also possible to adjust the flow rate with a	
	pump equipped with a flowmeter	
Piping	For general combustible gases –	Undamaged
	Material: Polyurethane	
	Internal diameter: 4 mm	
	Pipe length: Within 1 m	
	For organic solvent gases –	
	Material: Teflon	
	Internal diameter: 4 mm	
	Pipe length: Within 1 m	
	For strongly adsorptive gases –	
	Material: Teflon	
	Internal diameter: 4 mm	
	Pipe length: Within 10 cm	

Proof test procedure

1) Bypass the safety function and take appropriate action to avoid a false trip.

2) Use HART communications to retrieve any diagnostuics and take appropriate action.

3) Send a HART command to the gas detector to go to the high alarm current output and verify that the analog current reaches that value.*1

4) Send a HART command to the gas detector to go to the low alarm current output and verify that the analog current reaches that value.*2

5) Inspect the gas detector for any leaks, visible damage, or contamination.

6) Perform a two-point calibration of the gas detector over the full working range.

7) Remove the bypass and otherwise restore normal operation

*1 This tests for compliance voltage problems such as a low loop power supply voltage or increased wiring resistance. This also tests for other possible failures.

*2 This tests for possible quiescent current related failures.

* Functionality anticipates disabling of product functions when performing the proof test.* Keep a record of proof test results.

(Refer to the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8" for more information.) $9\sqrt{13}$

*This product may malfunction if the proof test is not performed correctly. The proof test must be performed by trained service personnel.

2-7 Maintenance

For maintenance items other than the proof test, refer to '7. Maintenance' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". 9 13

2-8 Repairs and replacements

Refer to '7-7 Parts replacement' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". 9 13

2-9 Storage, Relocation, and Disposal

Refer to '8. Storage, Relocation, and Disposal' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $\sqrt{9}$

2-10 Startup time (initialization time)

Refer to '5.Usage Instruction' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". 23/13

2-11 Reliability data

Failure rates, failure modes, and other information are recorded in the following FMEDA report.

<H/W Version 2.1 or earlier>

	Model	FMEDA report Report No.:	
$\overline{5}$	SD-3EC	RK 21/04-192 R003 V3R3	A A

<H/W Version 2.2 or later>

Model	FMEDA report Report No.:
SD-3RI	RK 19/01-130 R001 V4R3 / 🛐
SD-3NC	RK 20/05-036 R002 V2R5
SD-3EC	RK 21/04-192 R003 V4R2 13
SD-3ECB	RK 22/05-277 R004 V2R2 13

Refer to the separate 'FMEDA Report'.

To satisfy SIL2, use at HFT = 0. To satisfy SIL3, use at HFT = 1.

2-12 Operation mode

Low frequency operation request mode (frequency of operation requests is once annually or less)

2-13 Availability rate Availability rate: Constantly available

2-14 Power source Rating: 24 V DC Allowable range: 18.0 to 30.0 V DC

2-15 Product service life

Product service life: 10 years (Othen than the sensor).

3 years (sensor)

/3

The reliability data in the FMEDA report is valid only during this period.

2-16 Requested parameter settings

• The 4 - 20 mA output value in the event of a use involving burnout (failure) is 3.6 mA or less or 21 mA or greater.

• From a security perspective, use a write protect function that prevents changes in settings via HART protocol signals.

• The above requirements must be met for applications involving functional safety.

2-17 Limitations on installation and operating environments Installation: Refer to '4. Installation' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $9\sqrt{13}$

Operating environment: Refer to '10. Product Specifications' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $\sqrt{9}\sqrt{13}$

2-18 Application limitations

Refer to '5.Usage Instruction' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $\sqrt{3}$

2-19 Identification of hardware/software configurations

SD-3RI SD-3NC SD-3EC(H2S,CO,O2) SD-3ECB(CL2,NH3,NO2)

Hardware Version	Software Version
2.1	2.1
2.2	2.2
2.3	2.3

%The above are all possible combinations of Hardware and Software.

2-20 Product Specifications

Refer to '10. Product Specifications' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $\cancel{9}$

2-21 Error codes and message

Corrective action and procedures when faults or errors occur Refer to '9.Troubleshooting' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $\sqrt{9}$

2-22 Operator interfaces

Refer to '5.Usage Instruction' in the "SD-3 Series Export Specifications Technical Manual for SIL and FM Specifications (PT2E-287) rev.8". $9 \sqrt{13}$

2-23 Prohibited itemsModification of this product is prohibited.2.24 Terminology and approviations

2-24 Terminology and abbreviations

Term	
Safety	Freedom from unacceptable risk of harm.
Functional Safety	The ability of a system to carry out the actions necessary to achieve
	or to maintain a defined safe state for the equipment under control of
	system
Basic Safety	The equipment must be designed and manufactured such that it
	protects against resulting fire and explosion under explosive
	atmosphere
Safety Assessment	The investigation to arrive at a judgment - based on
	evidence - of the safety achieved by safety-related systems
Fail-Safe State	State that the defined fail-safe
Fail Safe	Failure that go to the defined fail-safe state without a demand from
	the process
Fail Dangerous	Failure that does not respond to a demand from the process
	(i.e. being unable to go to the defined fail-safe state).
	Failure that deviates the process signal or the actual output by more
	than 15% of span, drifts away from the user defined threshold (Trip
	Point) and that leaves the output within active scale.
Fail Dangerous	Failure that is dangerous and that is not being diagnosed by
Undetected	automatic stroke testing.
Fail Dangerous	Failure that is dangerous but is detected by automatic stroke testing.
Detected	
Fail Annunciation	Failure that does not cause a false trip or prevent the safety function
Undetected	but does cause loss of an automatic diagnostic and is not detected
	by another diagnostic.
Fail Annunciation	Failure that does not cause a false trip or prevent the safety function
Detected	but does cause loss of an automatic diagnostic or false diagnostic
	indication.
Fail No Effect	Failure of a component that is part of the safety function but that has
	no effect on the safety function.
Low demand mode	Mode, where the frequency of demands for operation made on a
	safety-related system is no greater than twice the proof test
	frequency.

Abbreviations

FMEDA	Failure Modes, Effects and Diagnostic Analysis
HFT	Hardware Fault Tolerance
	Tolerance that to keep executing the function requested under the
	hardware fault and error condition
MOC	Management of Change
	Management of change the hardware or software elements, and
	keep traceability
PFDavg	Average Probability of Failure on Demand
SFF	Safe Failure Fraction
	The fraction of the overall failure rate of a device that results in either
	a safe fault or a diagnosed unsafe fault.
SIF	Safety Instrumented Function
	A set of equipment intended to reduce the risk due to a specific
	hazard.
SIL	Safety Integrity Level
	Discrete level (one out of a possible four) for specifying the safety
	integrity requirements of the safety functions to be allocated to the
	E/E/PE safety-related systems where Safety Integrity Level 4 has the
	highest level of safety integrity and Safety Integrity Level 1 has the
	lowest.
SIS	Safety Instrumented System
	Implementation of one or more Safety
	Instrumented Functions. A SIS is composed of any combination of
	sensor(s), logic solver(s), and final element(s).